Stat 513
Fall 2025
Problem Set 6
Topic 6: Moment Generating Functions, Characteristic Functions, and

Cumulants

Due Wednesday, November 19 at 23:59

Problem 1. Positivity of the Laplace Transform.

Show that
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for all n € N.

Problem 1 Solution

Consider n = 1. We can see that
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= —E [texp(—tX))].

Continuing this process, we can show that
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L(t) = (—1)"E [t" exp(—tX)].

Dividing by (—1)" gives us

(~1)" S L(t) = E[t" exp(~tX)] 2 0

where the inequality comes from the fact that ¢ > 0 and exp(tz) > 0, so the expectation is non-negative for

all n.



Problem 2. Generating Moments.
Complete the proof that if for a random variable X the moment generating function Mx(t) exists for
t € (—6,0) where 6 > 0, then

E[X7] = MY (0)

forall j =1,2,....

Problem 2 Solution

We can show the statement

e = PE[XITH]
MY :E[X-’]—i—zikl .
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by induction, by taking the derivative of the above with respect to ¢ to get
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The result comes from taking out the first term of the sum and shifting the indices.

Problem 3. Deriving Characteristic Functions Derive characteristic functions for the following distri-

butions:
a) X is a discrete random variable with
P(X =k)=0(1—0)"
where 6 € (0,1) and £k =0,1,....
b) X is a continuous random variable with the following pdf:
1
fx(@) = 5 exp (~ Ja])

for x € R. This is the Laplace distribution.

Problem 3 Solution
a) p(t) = 1,(129)67,1,

b) ¢(t) = g

Problem 4. Continuity of characteristic functions.

Show that characteristic functions are continuous with respect to .



Problem 4 Solution We want to show that ¢(t + ¢) — ¢(t) as ¢ — 0, which can be accomplished by
showing that |¢(t + €) — ¢(t)| goes to zero. We can bound using the absolute value at first:

oo

ot + ) — (b)) < / lexp(iz(t + €)) — exp(itz)| dF.

Since the function inside of the integral on the right hand-side is bounded, we can use the dominated

convergence theorem to take the limit as ¢ — 0:
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Problem 5. Poisson Distribution.

Recall that a random variable X is Poisson distributed with parameter A > 0 if it is discrete and

AFexp(—\)

P(X = k)= =

forall k =0,1,....
a) Derive the moment generating function of the Poisson distribution.

b) Show that each of the cumulants of the Poisson distribution are equal to A.

Problem 5 Solution

a) The moment generating function is

My (t) = E [exp(tX)]

= exp(—A)\F
k=0 ’

B i exp (tk — A — klog(\))

where we use the power series expansion of e” in reverse in the third step.



b) The cumulant generating function is

K(t)=X(e"—1).

All derivatives of K (t) are \e!, so evaluating at ¢ = 0 gives us that all cumulants are equal to \.

Problem 6. Log-normal moment generating function.

A random variable X has a log-normal distribution if it is absolutely continuous with p.d.f.
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Show that the moment generating function of the log-normal distribution does not exist (in a neighborhood

fx(x) =
around zero), even though E[X™] exists for all n = 0,1,.. ..

Problem 6 Solution For simplicity consider the case that p = 0 and o = 1. Letting y = log(z), then

1 [ (25
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/ mexp ny)exp( ‘1’2) dy.

This is the moment generating function of a standard normal distribution evaluated at t = n, so

dy = %CLL and we get

E[X"] = exp (n2/2) :

However, the moment generating function

Mx(t)=E [¢¥] = \/12?/()% %exp (m— (log2aj)2> dx

diverges when ¢ > 0, since exp(tx) goes to infinity as & — oo; as such, the moment generating function does

not exist in a neighrbohood around zero.

Problem 7. Kurtosis.

Recall that Kurtosis of a random variable X is defined as

K4 (X)
Var[X)?

where K4(X) denotes the fourth cumulant of X, which has the following expression:

Ky(X)=E [(X — E[X])*] - 3Var[X]2.



a) Show that for any random variable X,

Kurtosis(X) > —2.

b) Let X ~ Bernoulli(p) for p € (0,1). Derive an expression for the Kurtosis of X, and show that it

achieves its minimum value of Kurtosis(X) = —2 at p = 3.

Problem 7 Solution

a) We want to show that
E [(X - IE[X})‘I} — 3Var(X)? > —2Var(X)>.

This is equivalent to

E [(X - E[X})“] > Var(X)2.
Let Y = (X — E[X])?. Then we can write the above expression as
E[Y?] > E[Y]?

2

This holds via Jensen’s inequality, and the fact that g(x) = 2* is a convex function.

b) We can see that
E[(X —EX])*] = p(1=p) (1= p)° +1).
Subtracting 3Var[X]? = 3p?(1 — p)? we get
p(1=p) (1 =p)* +p%) = 3p°(1 - p)°

= p(1—p) (1 =3p+3p® —p* +p° — 3p+ 3p?)

= p(1—p) (1—6p+6p°).

2

Dividing by p?(1 — p)?, we get
Kurtosis(X) = 1=6p1=p)
p(1—p)
Plugging in p = % we can see that Kurtosis(X) = —2. We can see this is the minimum value for all p
since setting f(p) = %(_1;)’)) we can see that
0 1-2
ap! P = (p—pI;) -

1

which means that f(p) achieves its minimum at p = 3.



Problem 8. Random Sum.
Let J ~ Poisson(A), let X1, Xo,... be independent and identically distributed random variables with mean

p and variance o2, and let
J
S=>"X;.
§=0

Assume that X; have a moment generating function Mx (¢) which exists within a neighborhood of zero.
Derive an expression for the moment generating function of S (hint: break up the expectation into an inner

expectation conditioned on the value of J, and use indicator functions).

Problem 8 Solution We want to evaluate
Mg (t) = E [exp(tS)] .

We will write S as Y -, X;1{j < J} which will make things easier. Using our expectation rules, we can

see that

n=1

Ms(t) =E E{exp (in]l{j < ]}) ‘J}]
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E [MX (t)
E [Mx(t)”]
E

[exp (J log(Mx (t)))]
M (log(Mx(t)))

— exp (A (Mx () — 1))

using the moment generating function of the Poisson distribution for the last step.



