
Stat 513
Fall 2025

Problem Set 6

Topic 6: Moment Generating Functions, Characteristic Functions, and

Cumulants

Due Wednesday, November 19 at 23:59

Problem 1. Positivity of the Laplace Transform.

Show that

(−1)n
∂n

∂tn
L(t) ≥ 0

for all n ∈ N.

Problem 1 Solution

Consider n = 1. We can see that

∂

∂t
L(t) =

∂

∂t
E [exp(−tX)]

=
∂

∂t

∫ ∞

0

exp(−tx)dF (x)

=

∫ ∞

0

∂

∂t
exp(−tx)dF (x)

=

∫ ∞

0

−t exp(−tx)dF (x)

= −E [t exp(−tX)] .

Continuing this process, we can show that

∂n

∂nt
L(t) = (−1)nE [tn exp(−tX)] .

Dividing by (−1)n gives us

(−1)n
∂n

∂nt
L(t) = E [tn exp(−tX)] ≥ 0

where the inequality comes from the fact that t ≥ 0 and exp(tx) ≥ 0, so the expectation is non-negative for

all n.
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Problem 2. Generating Moments.

Complete the proof that if for a random variable X the moment generating function MX(t) exists for

t ∈ (−δ, δ) where δ > 0, then

E[Xj ] = M
(j)
X (0)

for all j = 1, 2, . . ..

Problem 2 Solution

We can show the statement

M
(j)
X = E[Xj ] +

∞∑
k=1

tkE[Xj+k]

k!
.

by induction, by taking the derivative of the above with respect to t to get

M
(j+1)
X =

∞∑
k=1

tk−1E[Xk]

(k − 1)!
.

The result comes from taking out the first term of the sum and shifting the indices.

Problem 3. Deriving Characteristic Functions Derive characteristic functions for the following distri-

butions:

a) X is a discrete random variable with

P (X = k) = θ(1− θ)k

where θ ∈ (0, 1) and k = 0, 1, . . . .

b) X is a continuous random variable with the following pdf:

fX(x) =
1

2
exp (− |x|)

for x ∈ R. This is the Laplace distribution.

Problem 3 Solution

a) φ(t) = θ
1−(1−θ)eit

b) φ(t) = 1
1+t2

Problem 4. Continuity of characteristic functions.

Show that characteristic functions are continuous with respect to t.
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Problem 4 Solution We want to show that φ(t + ϵ) → φ(t) as ϵ → 0, which can be accomplished by

showing that |φ(t+ ϵ)− φ(t)| goes to zero. We can bound using the absolute value at first:

|φ(t+ ϵ)− φ(t)| ≤
∫ ∞

−∞
|exp(ix(t+ ϵ))− exp(itx)| dF.

Since the function inside of the integral on the right hand-side is bounded, we can use the dominated

convergence theorem to take the limit as ϵ → 0:

lim
ϵ→0

|φ(t+ ϵ)− φ(t)| ≤
∫ ∞

−∞
lim
ϵ→0

|exp(ix(t+ ϵ))− exp(itx)| dF =

∫ ∞

−∞
0dF = 0.

Problem 5. Poisson Distribution.

Recall that a random variable X is Poisson distributed with parameter λ > 0 if it is discrete and

P (X = k) =
λk exp(−λ)

k!

for all k = 0, 1, . . ..

a) Derive the moment generating function of the Poisson distribution.

b) Show that each of the cumulants of the Poisson distribution are equal to λ.

Problem 5 Solution

a) The moment generating function is

MX(t) = E [exp(tX)]

=

∞∑
k=0

exp(tk)
exp(−λ)λk

k!

=

∞∑
k=0

exp (tk − λ− k log(λ))

k!

= e−λ
∞∑
k=0

(λet)
k

k!

= e−λ exp
(
λet
)

= exp
(
λ(et − 1)

)
.

where we use the power series expansion of ex in reverse in the third step.
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b) The cumulant generating function is

K(t) = λ
(
et − 1

)
.

All derivatives of K(t) are λet, so evaluating at t = 0 gives us that all cumulants are equal to λ.

Problem 6. Log-normal moment generating function.

A random variable X has a log-normal distribution if it is absolutely continuous with p.d.f.

fX(x) =
1

xσ
√
2π

exp

(
− (log x− µ)2

2σ2

)
.

Show that the moment generating function of the log-normal distribution does not exist (in a neighborhood

around zero), even though E[Xn] exists for all n = 0, 1, . . ..

Problem 6 Solution For simplicity consider the case that µ = 0 and σ = 1. Letting y = log(x), then

dy = 1
xdx and we get

E [Xn] =

∫ ∞

0

1√
2π

xn−1 exp

(
− (log x)2

2

)
dx

=

∫ ∞

0

1√
2π

xn exp

(
−y2

2

)
dy.

=

∫ ∞

0

1√
2π

exp (ny) exp

(
−y2

2

)
dy.

This is the moment generating function of a standard normal distribution evaluated at t = n, so

E [Xn] = exp
(
n2/2

)
.

However, the moment generating function

MX(t) = E
[
etX
]
=

1√
2π

∫ ∞

0

1

x
exp

(
tx− (log x)2

2

)
dx

diverges when t ≥ 0, since exp(tx) goes to infinity as x → ∞; as such, the moment generating function does

not exist in a neighrbohood around zero.

Problem 7. Kurtosis.

Recall that Kurtosis of a random variable X is defined as

K4(X)

Var[X]2

where K4(X) denotes the fourth cumulant of X, which has the following expression:

K4(X) = E
[
(X − E[X])

4
]
− 3Var[X]2.
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a) Show that for any random variable X,

Kurtosis(X) ≥ −2.

b) Let X ∼ Bernoulli(p) for p ∈ (0, 1). Derive an expression for the Kurtosis of X, and show that it

achieves its minimum value of Kurtosis(X) = −2 at p = 1
2 .

Problem 7 Solution

a) We want to show that

E
[
(X − E[X])

4
]
− 3Var(X)2 ≥ −2Var(X)2.

This is equivalent to

E
[
(X − E[X])

4
]
≥ Var(X)2.

Let Y = (X − E[X])2. Then we can write the above expression as

E[Y 2] ≥ E[Y ]2.

This holds via Jensen’s inequality, and the fact that g(x) = x2 is a convex function.

b) We can see that

E
[
(X − E[X])

4
]
= p(1− p)

(
(1− p)3 + p3

)
.

Subtracting 3Var[X]2 = 3p2(1− p)2 we get

p(1− p)
(
(1− p)3 + p3

)
− 3p2(1− p)2

= p(1− p)
(
1− 3p+ 3p2 − p2 + p3 − 3p+ 3p2

)
= p(1− p)

(
1− 6p+ 6p2

)
.

Dividing by p2(1− p)2, we get

Kurtosis(X) =
1− 6p(1− p)

p(1− p)
.

Plugging in p = 1
2 we can see that Kurtosis(X) = −2. We can see this is the minimum value for all p

since setting f(p) = 1−6p(1−p)
p(1−p) we can see that

∂

∂p
f(p) =

1− 2p

(p− p2)
= 0

which means that f(p) achieves its minimum at p = 1
2 .
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Problem 8. Random Sum.

Let J ∼ Poisson(λ), let X1, X2, . . . be independent and identically distributed random variables with mean

µ and variance σ2, and let

S =

J∑
j=0

Xj .

Assume that Xj have a moment generating function MX(t) which exists within a neighborhood of zero.

Derive an expression for the moment generating function of S (hint: break up the expectation into an inner

expectation conditioned on the value of J , and use indicator functions).

Problem 8 Solution We want to evaluate

MS(t) = E [exp(tS)] .

We will write S as
∑∞

n=1 Xj1{j ≤ J} which will make things easier. Using our expectation rules, we can

see that

MS(t) = E

[
E

{
exp

( ∞∑
n=1

Xj1{j ≤ J}

)∣∣∣∣J
}]

= E

E


∞∏
j=1

exp (Xj1{j ≤ J})
∣∣∣∣J



= E

 ∞∏
j=1

E
[
exp (Xj)

1{j≤J} | J
]

= E

 ∞∏
j=1

MXj
(t)1{j≤J}


= E

[
MX(t)

∑J
j=1 1{j≤J}

]
= E

[
MX(t)J

]
= E [exp (J log(MX(t)))]

= MJ (log(MX(t)))

= exp (λ (MX(t)− 1))

using the moment generating function of the Poisson distribution for the last step.

6


