
Stat 513
Fall 2025

Problem Set 5

Topic 5: Law of Large Numbers and Types of Convergence

Due Wednesday, November 12 at 23:59

Problem 1. A Case where Convergence in Distribution Implies Convergence in Probability

Let X denote a random variable such that P (X = a) = 1 for some constant a, and let Xn denote a sequence

of random variables on the same probability space. Show that

X
D−→ a implies X

P−→ a.

Problem 1 Solution Say that X
D−→ a. Then

lim
n→∞

Fn(x) = 1{x ≥ c}.

We want to show that the probability that |Xn − a| ≥ ϵ goes to zero as n → ∞. In order to write this

probability in terms of Fn, we can split it up:

P (|Xn − a| ≥ ϵ) = P (Xn ≤ a− ϵ) + P (Xn > a+ ϵ)

≤ Fn(a− ϵ) + 1− Fn(a+ ϵ).

Taking the limit on both sides as n → ∞, we get

P (|Xn − a| ≥ ϵ) ≤ 0 + 1− 1 = 0

which implies that X
P−→ a.

Problem 2. Convergence Almost Surely Implies Convergence in Distribution

Show directly (i.e., without using the fact that almost sure convergence implies convergence in probability,

which implies convergence in distribution) that

Xn
a.s−−→ X implies Xn

D−→ X.
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Problem 2 Solution There are multiple ways to do this. In one way, we can use the fact that if

lim
n→∞

E[f(Xn)] = E[f(X)]

for all bounded, continuous functions f , then Xn
D−→ X. Note that if Xn(ω) → X(ω), then f(Xn(ω)) →

f(X(ω)) because f is continuous. Since “almost surely” means that this holds with probability one, it follows

that limn→∞ E[f(Xn)] = E[f(X)], as required.

Problem 3. Convergence of Borel Sets

Let B denote a Borel set in R. Is it true that Xn
D−→ X implies

lim
n→∞

P (Xn ∈ B) = P (X ∈ B)?

Problem 3 Solution

No, consider Xn ∼ Uniform(−1/n, 0). Let X ≡ 1, then can see that Xn
D−→ 1. Consider B = (−1, 0). Then,

P (Xn ∈ B) = 1 for all n, so limn→∞ P (Xn ∈ B) = 1, however P (X ∈ B) = 0.

Problem 4. Example of Convergence in Distribution

Let λ > 0, and let Y ∼ Poisson(λ), meaning that Y is a discrete random variable such that

P (Y = k) =
λke−λ

k!
for k ∈ N0.

Let Xn ∼ Binomial(n, pn), meaning that Xn is a discrete random variable such that

P (Xn = k) =

(
n

k

)
pkn(1− pn)

n−k for 0 ≤ k ≤ n.

Show that if pn = λ/n, then Xn
D−→ Y .

Problem 4 Solution

We can write the p.m.f. of the Xn as

lim
n→∞

P (Xn = k) = lim
n→∞

(
n

k

)(
λ

n

)k (
n− λ

n

)n−k

=
λk

k!
lim

n→∞

n!(n− λ)n−k

n(n− k)!
=

λk

k!
lim
n→∞

(
1− λ

n

)n

=
λk

k!
eλ

which is the Poisson probability mass function, as required.

Problem 5. Lack of Convergence
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Show an example of a sequence of random variables that does not converge in distribution to any random

variable.

Problem 5 Solution Let Xn ∼ Uniform(0, 1/n). Then Fn(x) will converge to F (x) = 1{x ≤ 0}, which is

not right-continuous and as such is not a valid distribution function.

Problem 6. Weak Law of Large Numbers with Dependence

Consider a sequence of random variables denoted by Xn, with a common mean E[Xi] = µ and unit variance

V [Xi] = 1. Instead of assuming that Xn are independent, let the covariance between Xi and Xj be defined

as a function of the distance between their indices; specifically,

Cov (Xi, Xj) = f(i− j)

for some function f : N → R, where we recall that Cov[X,Y ] = E[XY ] − E[X]E[Y ]. Show that if

limi→∞ f(i) = 0 , then

1

n

n∑
i=1

Xi
P−→ µ.

Problem 6 Solution Using Chebyshev’s inequality, it suffices to show that

V
[
Xn

]
=

1

n2
V[Xn] → 0

where Xn = 1
n

∑n
j=1 Xj . We can start with the identity

V

 n∑
j=1

Xj

 =

∞∑
n=1

V[Xj ] +
∑
j>i

Cov[Xi, Xj ].

The first term will go to zero for reasons analogous to the “regular” weak law of large numbers, so let’s look

at the second term. We can write this term as∑
j>i

Cov[Xi, Xj ] =

n∑
j=1

(n− j)f(j)

using the fact that for each lag of size j, there will be n − j pairs that are j indices apart. Fix ϵ > 0, and

since limi→∞ f(i) = 0 we can let N be large enough such that f(k) ≤ ϵ for all k ≥ N . Taking n to be greater

than N , we can write this sum as

n∑
j=1

(n− j)f(j) =

N∑
j=1

(n− j)f(j) +

n∑
j=N+1

(n− j)f(j).

≤
N∑
j=1

(n− j)f(j) + ϵ(n−N)2
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Where the inequality comes from the fact that f(j) ≤ ϵ, (n − j) ≤ (n − N), and the fact that the second

summation has n−N terms. Now, we can add back the 1
n2 term to see that

1

n2

 N∑
j=1

(n− j)f(j) + ϵ(n−N)2


=

1

n2

N∑
j=1

(n− j)f(j) + ϵ

(
1− N

n

)2

which will go to zero as n → 0 since N is fixed and first sum is a constant and N
n → 0. Since ϵ is arbitrary,

V[Xn] → 0 as required.

Bonus Problem. Convergence in Expectation

Let a denote a constant and Xn a sequence of random variables. Show by example that Xn
a.s−−→ c does not

necessarily imply that limn→∞ E[Xn] = c.

Problem 6 Solution Let Xn ∼ Bernoulli(1/n2), and consider Yn = n2Xn. Then,

E[Yn] = n2 1

n2
= 1

so limn→∞ E[Yn] = 1. Let

An = {ω : Yj(ω) = 0 for all j ≥ n}.

and let Bn = Ac
n. Note that the sets Bn form an increasing sequence, so we have

lim
n

P (Bn) = P (lim
n

Bn) = P

 ∞⋃
j=1

Bj


. We can see that

P (Bn) ≤ P

 ∞⋃
j=n

{Yj(ω) ̸= 0}

 ≤
∞∑
j=n

P ({ω : Yj(ω) = 0}) =
∞∑
j=n

1

n2
.

Taking the limit, we see that limn P (Bn) = 0, which means that P
(⋃∞

j=1 Bj

)
= 0. Finally, we can see that

P

 ∞⋃
j=1

Bj

c = P ({ω : Yn(ω) → 0}) = 1

which means that Yn
a.s−−→ 0.
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