Stat 513
Fall 2025
Problem Set 4

Topic 4: Conditional Distributions and Conditional Expectation

Due Sunday, October 19 at 23:59

Problem 1. Tightness of Chebyshev’s Inequality

Consider a random variable X with range {—a, 0, a} for some a > 0 such that:

P(X=-a)=p

Show that for some value of k, Chebyshev’s inequality holds with equality.

Problem 1 Solution

Recall that Chebyshev’s inequality is:

|~

P(IX — E[X]| > ko) <

2

B

We can see that
EX]=(-a)p+0+ap=0
and

0? = E[X?] = (—a)*p + 0+ a’p = 2a*p

S0 0 = +/2pa.
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Let k= NeTE Then Chebyshev’s inequality becomes
P(|X]|>a) < 2p.

Evaluating the probability on the left-hand side, we get

P(IX|>a)=P(X=a)+P(X=—-a)=p+p=2p

Problem 2. Cantelli’s inequality



i)

Prove the following inequality:

_ S\ < —
P(X —-E[X]>)) < P

where A > 0.

ii) When is Cantelli’s inequality better than Chebyshev’s inequality?

Problem 2 Solution

i)

ii)

Let Y = X — E[X], then for any a > 0,
P(Y>XAN)=PY +a>X+a) <P(Y +a)*>(\+a)?).

Since (Y + a)? is non-negative, by Markov’s inequality,

2 2 E[(YJFCL)?} _ot+ad
P((Y +a)*>(A+a)’) < Ora?  OraE

Since the left-hand side is less than or equal to the right-hand side for all a > 0, we can obtain a tighter

bound by minimizing the right-hand side over a.

We can then obtain Cantelli’s inequality by minimizing this bound over a:
2

o
PY>N< T
( _)\)_02-1-)\2

Cantelli’s inequality is better than Chebyshev’s inequality when evaluating P(X — E[X] > \), since

no

P(X ~E[X]>)) < P(X -EX]|>)) <2

|

which is strictly greater than #202 since 02 > 0. When evaluating P (|]X — E[X]|), Chebyshev’s
inequality is better since applying Cantelli’s inequality to both sides yields

PX —EX] >\ < 22
T T 024 )\2

which is strictly greater than K—; when A > o.

Problem 3. A Sum Rule for Expectations

Show that if the range of X is the natural numbers, then

E[X] = ip(x > n).
n=1

[\



Problem 3 Solution

Since X is a discrete random variable, we can use the following expression for the expectation:

E[X] = Zz’P(X =)
This becomes
E[X] :ZZP(X:?Z) = Z P(X =)
:ZZP(X:@') =Y P(X >n)

since Y .o P(X =1i) = P(X > n).

Problem 4. Conditional Densities for Absolutely Continuous Distributions
Let X and Y denote real-valued random variables such that the distribution of (X, Y") is absolutely continuous

with density function
= —1 1 1
p(m,y) 35 T>1, 9> /:c

Find conditional distributions for X given Y =y and Y given X = z.

Problem 4 Solution The marginal density function of X is

> 1 I 1
px(m):/ —ody=——5"| =3
1w T3y 23y " 22
The marginal density function of Y is
W= [ dy= | =]
py\y) = . a3y? y 2w2y?|, 22

Since these are absolutely continuous distributions, we can use Sevirini Theorem 2.3 to get

plz,y) 2
1 11 f— = — } r'>1'r >1,.
pxy (z(y) Py () e when x Y Jx
and
plz,y) 1
py|x\y|x) = =— whenz>1ly>1/x
x(vlo) px(y)  xy? /

Problem 5. Mixed Distribution Let (X,Y") denote a two-dimensional random vector with range (0, 00) x

{1,2} such that for any set A C (0,00) and y € {1,2},

1
PXeAY =y = 5/ yexp(—yx)dz.
A



Find conditional distributions for X given Y = y and for Y given X = z.

Problem 5 Solution Consider the distribution of X given Y = y. The marginal distribution of Y is

discrete, with

P(Yzl):P(XGX,Yzl):%/ yexp(fy:c)dl':%
0

so it must be that P(Y = 2) = 1 as well. Since P(Y = y) is non-zero for y € {1,2}, we can evaluate the

conditional distribution function directly:

P(X €AY =y)
P =) = /Ayexp(—yx) dz.

It follows that conditional on ¥ = y, X has an absolutely continuous distribution with density function

P(X € AlY =y) =

yexp(—yx).

For the distribution of Y given X, we are looking for a function ¢(B,x) that satisfies the relationship

P(Xe€eAYeB)= /A q(B,x)dFx(z) = %/Ayexp(—xy) dx

where B C {1,2}. We can see that the marginal distribution for X is
1
P(XeA) =P(XecAYec{l,2))=P(XcAY=1)+P(X c A,Y =2) = / 5 (exp(—a) + 2exp(~20)) d.
A

It follows that

/ yexp(—yz) dx
JA

NN

P(XeAY eB)= /Aq(B,x) dFx(x) = %/Aq(B,:r) (exp(—x) + 2exp(—2x))) dx =

In order to satisfy the last equality in the above, we can set ¢(B,x) (for B = {y}) to be

y exp(—yx)

P =ylX =2) = o o  sexp(—20)’

Problem 6. Non-uniqueness of Conditional Probabilities Using the joint distribution from the pre-
vious problem, describe two conditional distributions (i.e., set functions ¢; (-, y) and ¢a(-,y) that satisfy the

definition of conditional probability) that differ on an uncountable set.

Problem 6 Solution Any example of conditional densities that differ on an uncountable set of probability

zero (there are many such sets).

Problem 7. Conditional Distributions as a Limit



Let X and Y denote real-valued random variables such that the distribution of (X, Y") is absolutely continuous
with density function f, and let fx denote the marginal density function of X. Suppose that there exists a
point zg such that fx(xzg) > 0, fx is continuous at xg, and for almost all y, f(-,y) is continuous at xg. Let

A C R. For each € > 0, let

d(e) = P(Y € Alzg < X <z +¢).

Show that
P(Y € A|IX =x0) = 21_I>I(1) d(e).

Problem 7 Solution We can see that

d(e) = P(X € [zg,z0 +€,Y € A) - f‘:ooj% fA fX,Y(iL':y) dy dz
N P(X € [z, 20 + €]) B f:;ﬁg Jy fxy(2,y) dydz

Taking the limit as € — 0, we get

)  Jafxy(@o,y)de [ fxy(zo.y)
9 = Jy fxy(@o,y)dy  Ja  fx(xo) e

given that fx(zp) > 0. Since the distributions are absolutely continuous, we can use Sevirini Theorem 2.3

_ [fxvy(®o.y)
- fx(zo0)

that P(Y € A|X = xp) = lim._,( d(¢) as required.

to infer that fy|x—z,(y|zo) is the density function for the distribution of X|Y, which means

Problem 8. Sums of Conditional Expectations
Let X denote a real valued random variable with range X, such that E[|X|] < co. Let Ay,..., A, denote
disjoint subsets of X'. Show that

N
B(X) =) E[X|X € 4;]P(X € A)).
i=1

Problem 8 Solution Let Y; = 1{X € A,}; note that this is a random variable that takes values zero and
one, and that {Y; =1} = {X € A;}. By definition, we know that the conditional expectation E[X|Y;] must
satisfy

BLXI(Y € BY] = [ BIXIY, = yaFy(s).



Setting B = {1}, we can see

Thus,
> E[X|A;]P(
i=1

Since 377, I{X € A;} = 1.

that

BLXI(X € A)) = [ BIXIY, = 1aA()
XIYP(Y; = 1)

XeAd))= iE[Xl{X €A;}=E

i=1

XY X € 4A;}
j=1

= B[X]



