
Stat 513
Fall 2025

Problem Set 4

Topic 4: Conditional Distributions and Conditional Expectation

Due Sunday, October 19 at 23:59

Problem 1. Tightness of Chebyshev’s Inequality

Consider a random variable X with range {−a, 0, a} for some a > 0 such that:

P (X = −a) = p

P (X = 0) = 1− 2p

P (X = a) = p.

Show that for some value of k, Chebyshev’s inequality holds with equality.

Problem 1 Solution

Recall that Chebyshev’s inequality is:

P (|X − E[X]| ≥ kσ) ≤ 1

k2

We can see that

E[X] = (−a)p+ 0 + ap = 0

and

σ2 = E[X2] = (−a)2p+ 0 + a2p = 2a2p

so σ =
√
2pa.

Let k = 1√
2p
. Then Chebyshev’s inequality becomes

P (|X| ≥ a) ≤ 2p.

Evaluating the probability on the left-hand side, we get

P (|X| ≥ a) = P (X = a) + P (X = −a) = p+ p = 2p

Problem 2. Cantelli’s inequality

1



i) Prove the following inequality:

P (X − E[X] ≥ λ) ≤ σ2

σ2 + λ2

where λ ≥ 0.

ii) When is Cantelli’s inequality better than Chebyshev’s inequality?

Problem 2 Solution

i) Let Y = X − E[X], then for any a > 0,

P (Y ≥ λ) = P (Y + a ≥ λ+ a) ≤ P ((Y + a)2 ≥ (λ+ a)2).

Since (Y + a)2 is non-negative, by Markov’s inequality,

P ((Y + a)2 ≥ (λ+ a)2) ≤
E
[
(Y + a)2

]
(λ+ a)2

=
σ2 + a2

(λ+ a)2
.

Since the left-hand side is less than or equal to the right-hand side for all a > 0, we can obtain a tighter

bound by minimizing the right-hand side over a.

We can then obtain Cantelli’s inequality by minimizing this bound over a:

P (Y ≥ λ) ≤ σ2

σ2 + λ2

ii) Cantelli’s inequality is better than Chebyshev’s inequality when evaluating P (X − E[X] ≥ λ), since

P (X − E[X] ≥ λ) ≤ P (|X − E[X]| ≥ λ) ≤ σ2

λ2

which is strictly greater than σ2

λ2+σ2 since σ2 > 0. When evaluating P (|X − E[X]|), Chebyshev’s

inequality is better since applying Cantelli’s inequality to both sides yields

P (|X − E[X]| ≥ λ) ≤ 2σ2

σ2 + λ2

which is strictly greater than σ2

λ2 when λ > σ.

Problem 3. A Sum Rule for Expectations

Show that if the range of X is the natural numbers, then

E[X] =

∞∑
n=1

P (X ≥ n).
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Problem 3 Solution

Since X is a discrete random variable, we can use the following expression for the expectation:

E[X] =

∞∑
i=1

iP (X = i)

This becomes

E[X] =

∞∑
i=1

i∑
n=1

P (X = i) =
∑

1≤n≤i<∞

P (X = i)

=

∞∑
n=1

∞∑
i=n

P (X = i) =

∞∑
n=1

P (X ≥ n)

since
∑∞

i=n P (X = i) = P (X ≥ n).

Problem 4. Conditional Densities for Absolutely Continuous Distributions

LetX and Y denote real-valued random variables such that the distribution of (X,Y ) is absolutely continuous

with density function

p(x, y) =
1

x3y2
, x > 1, y > 1/x.

Find conditional distributions for X given Y = y and Y given X = x.

Problem 4 Solution The marginal density function of X is

pX(x) =

∫ ∞

1/x

1

x3y2
dy = − 1

x3y

∣∣∣∣∞
1/x

=
1

x2
.

The marginal density function of Y is

pY (y) =

∫ ∞

1

1

x3y2
dy = − 1

2x2y2

∣∣∣∣∞
1

=
1

2y2
.

Since these are absolutely continuous distributions, we can use Sevirini Theorem 2.3 to get

pX|Y (x|y) =
p(x, y)

pY (y)
=

2

x3
when x > 1, y > 1/x

and

pY |X(y|x) = p(x, y)

pX(y)
=

1

xy2
when x > 1, y > 1/x

Problem 5. Mixed Distribution Let (X,Y ) denote a two-dimensional random vector with range (0,∞)×

{1, 2} such that for any set A ⊂ (0,∞) and y ∈ {1, 2},

P (X ∈ A, Y = y) =
1

2

∫
A

y exp(−yx)dx.
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Find conditional distributions for X given Y = y and for Y given X = x.

Problem 5 Solution Consider the distribution of X given Y = y. The marginal distribution of Y is

discrete, with

P (Y = 1) = P (X ∈ X , Y = 1) =
1

2

∫ ∞

0

y exp(−yx) dx =
1

2

so it must be that P (Y = 2) = 1
2 as well. Since P (Y = y) is non-zero for y ∈ {1, 2}, we can evaluate the

conditional distribution function directly:

P (X ∈ A|Y = y) =
P (X ∈ A, Y = y)

P (Y = y)
=

∫
A

y exp(−yx) dx.

It follows that conditional on Y = y, X has an absolutely continuous distribution with density function

y exp(−yx).

For the distribution of Y given X, we are looking for a function q(B, x) that satisfies the relationship

P (X ∈ A, Y ∈ B) =

∫
A

q(B, x) dFX(x) =
1

2

∫
A

y exp(−xy) dx

where B ⊂ {1, 2}. We can see that the marginal distribution for X is

P (X ∈ A) = P (X ∈ A, Y ∈ {1, 2}) = P (X ∈ A, Y = 1)+P (X ∈ A, Y = 2) =

∫
A

1

2
(exp(−x) + 2 exp(−2x)) dx.

It follows that

P (X ∈ A, Y ∈ B) =

∫
A

q(B, x) dFX(x) =
1

2

∫
A

q(B, x) (exp(−x) + 2 exp(−2x))) dx =
1

2

∫
A

y exp(−yx) dx

In order to satisfy the last equality in the above, we can set q(B, x) (for B = {y}) to be

P (Y = y|X = x) =
y exp(−yx)

exp(−x) + 2 exp(−2x)
.

Problem 6. Non-uniqueness of Conditional Probabilities Using the joint distribution from the pre-

vious problem, describe two conditional distributions (i.e., set functions q1(·, y) and q2(·, y) that satisfy the

definition of conditional probability) that differ on an uncountable set.

Problem 6 Solution Any example of conditional densities that differ on an uncountable set of probability

zero (there are many such sets).

Problem 7. Conditional Distributions as a Limit
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LetX and Y denote real-valued random variables such that the distribution of (X,Y ) is absolutely continuous

with density function f , and let fX denote the marginal density function of X. Suppose that there exists a

point x0 such that fX(x0) > 0, fX is continuous at x0, and for almost all y, f(·, y) is continuous at x0. Let

A ⊂ R. For each ϵ > 0, let

d(ϵ) = P (Y ∈ A|x0 ≤ X ≤ x0 + ϵ).

Show that

P (Y ∈ A|X = x0) = lim
ϵ→0

d(ϵ).

Problem 7 Solution We can see that

d(ϵ) =
P (X ∈ [x0, x0 + ϵ], Y ∈ A)

P (X ∈ [x0, x0 + ϵ])
=

∫ x0+ϵ

x0

∫
A
fX,Y (x, y) dy dx∫ x0+ϵ

x0

∫
Y fX,Y (x, y) dy dx

.

Taking the limit as ϵ → 0, we get

lim
ϵ→0

d(ϵ) =

∫
A
fX,Y (x0, y) dx∫

Y fX,Y (x0, y) dy
=

∫
A

fX,Y (x0, y)

fX(x0)
dx.

given that fX(x0) > 0. Since the distributions are absolutely continuous, we can use Sevirini Theorem 2.3

to infer that fY |X=x0
(y|x0) =

fX,Y (x0,y)
fX(x0)

is the density function for the distribution of X|Y , which means

that P (Y ∈ A|X = x0) = limϵ→0 d(ϵ) as required.

Problem 8. Sums of Conditional Expectations

Let X denote a real valued random variable with range X , such that E [|X|] < ∞. Let A1, . . . , An denote

disjoint subsets of X . Show that

E(X) =

N∑
i=1

E[X|X ∈ Aj ]P (X ∈ Aj).

Problem 8 Solution Let Yj = 1{X ∈ Aj}; note that this is a random variable that takes values zero and

one, and that {Yj = 1} = {X ∈ Aj}. By definition, we know that the conditional expectation E[X|Yj ] must

satisfy

E[X1{Y ∈ B}] =
∫
B

E[X|Yj = y]dFY (y).
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Setting B = {1}, we can see that

E[X1{X ∈ Aj}] =
∫
y=1

E[X|Yj = 1]dFY (y) (1)

= E[X|Yj ]P (Yj = 1) (2)

= E[X|Aj ]P (X ∈ Aj). (3)

Thus,
n∑

i=1

E[X|Aj ]P (X ∈ Aj) =

n∑
i=1

E[X1{X ∈ Aj}] = E

X n∑
j=1

1{X ∈ Aj}

 = E[X]

Since
∑n

j=1 1{X ∈ Aj} = 1.
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