Stat 513

Fall 2025

Problem Set 3

Topic 3: Integration and Expectation

Total: 50 points

Due Sunday, October 5 at 23:59

Problem 1. Cantor Function.

Let \mathcal{C} denote the Cantor set. Recall the definition of the Cantor function:

$$F(x) = \begin{cases} \sum_{i=1}^{\infty} \frac{t_i(x)/2}{2^i} & x \in \mathcal{C} \\ \sup_{y \le x: y \in \mathcal{C}} c(y) & x \in [0, 1] \cap \mathcal{C}^c \end{cases}$$

where t_i is the *i*-ith ternary digit of x (see PS1). Formally fill in some of the following details from class:

- a) Show that the Cantor function is continuous at all $x \in (0,1)$.
- b) Show that the Cantor function is not absolutely continuous.
- c) Show that F'(x) = 0 almost everywhere.

Problem 2. Almost everywhere.

Addendum: For the following, you can assume that $\left|\int f d\mu\right| < \infty$ and $\left|\int g d\mu\right| < \infty$

a) Show that if $0 \le f, g$ and f = g almost everywhere (with respect to a measure μ), then

$$\int g d\mu = \int f d\mu.$$

b) Show that if $0 \le f, g$ and $f \le g$ almost everywhere, then

$$\int f d\mu \le \int g d\mu$$

Problem 3. General definition of the integral.

Let $f:\Omega\to\mathbb{R}$ denote a positive function, i.e. $f\geq 0.$ Let

$$SF(f) = \left\{ s(x) = \sum_{i=1}^{N} x_i \mathbb{1} \{ x \in A_i \} \middle| s \le f \right\}$$

denote the set of simple functions that are less than f (where $\{A_i\}_{i=1}^N$ denotes a finite partition of Ω). Show that the following two definitions of the integral are equivalent:

a)
$$\int f d\mu = \sup_{s \in SF(f)} \sum_{i=1}^{N} x_i \mu(A_i)$$

b)
$$\int f d\mu = \sup \sum_{i=1}^{N} \left[\inf_{x \in A_i} f(x) \right] \mu(A_i).$$

where the suprenum is over all finite partitions $\{A_i\}_{i=1}^N$ of Ω .

Problem 4. Integral of simple functions.

Prove that if f is a (non-negative) simple function, i.e.

$$f(x) = \sum_{i=1}^{N} x_i \mathbb{1}\{x \in A_i\}$$

for a finite partition $\{A_i\}_{i=1}^N$ of Ω , then $\int f d\mu = \sum_{i=1}^N x_i \mu(A_i)$ when using the second definition of Problem 3.

Bonus Problem.

Come up with a distribution function that is not absolutely continuous (with proof) that is not the Cantor function or based on the Cantor set.