
Stat 513
Assignment 1

Topic 1: Probability and Set Theory

Fall 2025

Total: 50 points

Due Sunday, September 7 at 23:59

1 Set Theory

Problem 1. Countability..

The algebraic numbers are defined as the set of roots of polynomials with integer coefficients. Formally,

A =

{
x : ∃N, a0, a1, ...aN ∈ Z s.t.

N∑
i=0

aix
i = 0

}
.

Is A countable or uncountable? Show your answer by either demonstrating the existence of a bijection, or

showing that no such bijection could exist.

Problem 1 Solution

Consider the set

B =

∞⋃
N=1

{(a0, ..., aN ) : a0, ..., aN ∈ Z} .

Note that B is “larger” than A, in the sense that we can, for example, let g : A → B to be such that g(x)

corresponds to one of the possible polynomials that has x as a root (for example, by taking the smallest N ,

then the smallest a0, ...). Then, g is a bijection with its g(A) ⊂ B; as such, it is sufficient to prove that B

is countable.

Since, as asserted in class, the countable union of countable sets is countable, it is sufficient to show that

component sets of the union in the definition of B are each countable. Since each of these can be seen as

equivalent to Z× Z× Z · · · , each of these can be countable using the (informal) “diagonal” argument used

to show that the rational numbers Q are countable.

For a more explicit example, fix N and consider y = (a0, ..., aN ). Since Z is countable, we can take a0 to be

equivalent to its corresponding natural number. Then if N is even, let f(y) correspond to a binary decimal

expansion with N zeros, a0 ones, a1 zeros, ... aN ones, and then infinite zeros; if N is odd start with ones,

so that you “end” with ones. Then, you can reconstruct (a0, ..., aN ) by first “reading off” the value of N ,
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and then repeatedly looking at the number of zeros/ones until you’ve determined the value of aN . Since

the rest of the digits are zero, this is a rational number, and the rational numbers are countable.

Problem 2. Countability and Density of Sets

As in class, let bi(x) denote the i-th binary digit of x ∈ (0, 1). The set of normal numbers between zero and

one is defined as the following set:

A =

{
x ∈ (0, 1)

∣∣∣∣ lim
n→∞

1

n

n∑
i=1

bi(x) =
1

2

}
.

i) Show that A is dense in (0, 1). Hint: For a given ϵ, look at the first n digits of the binary expansion

for an appropriate value of n.

ii) Show that the complement of A is also dense in (0, 1).

Problem 2 Solution

(i). Let ϵ > 0 and let m be large enough such that 1
2m < ϵ. For x ∈ (0, 1), let a ∈ A be such that

bi(a) =


bi(x) i ≤ m

0 i > m, i is even

1 i > m, i is odd

Then we can see that (taking n > m inside of the limits) that

lim
n→∞

1

n

n∑
i=1

bi(x) = lim
n→∞

1

n

m∑
i=1

bi(a) + lim
n→∞

1

n

n∑
i=m+1

bi(a)

= 0 +
1

2
=

1

2
.

So, we can see that a is a normal number, and also that

|a− x| =
∞∑

i=m+1

|bi(a)− bi(x)|
2n

≤ 1

2m
< ϵ

(ii) The logic here is the same as the above, but you can let bi(x) = 0, for example, for i > m.

Problem 3. Lim-sup and lim-inf of sets.

Consider a countable sequence of sets A1, A2, . . . . The lim-sup and lim-inf of this sequence are defined as

follows:

lim inf Ai =

∞⋃
n=1

∞⋂
i=n

Ai
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and

lim supAi =

∞⋂
n=1

∞⋃
i=n

Ai.

i) Let Ai =
[
0, 1

i

]
if i is odd and Ai = [0, 1] if i is even. What are lim supAi and lim inf Ai?

ii) Show that if Ai ⊂ Ai+1 for all i, then the liminf and limsup of {Ai}∞i=1 are equal to each other and to

the (infinite) union. Show the analogous result if Ai ⊃ Ai+1 with respect to the infinite intersection.

iii) Show that

(lim inf Ai)
c
= lim supAc

i

and

(lim supAi)
c
= lim inf Ac

i .

Problem 3 Solution

i)

lim supAi =

∞⋂
n=1

∞⋃
i=n

Ai =

∞⋂
n=1

[0, 1] = [0, 1].

lim inf Ai =

∞⋃
n=1

∞⋂
i=n

Ai =

∞⋃
n=1

{0} = {0}.

ii) If Ai ⊂ Ai+1, then
∞⋃
i=n

Ai =

∞⋃
i=1

Ai

∞⋂
i=n

Ai = An.

So,

lim supAi =

∞⋂
n=1

∞⋃
i=n

Ai =

∞⋃
i=1

Ai =

∞⋃
n=1

An =

∞⋃
n=1

∞⋂
i=n

Ai = lim inf Ai.

The other case of “decreasing” sets is similar.

iii) By DeMorgan’s laws for infinite unions/intersections, we have

(lim supAi)
c =

( ∞⋂
n=1

∞⋃
i=n

)c

=

∞⋃
n=1

( ∞⋃
i=n

Ai

)c

=

∞⋃
n=1

∞⋂
i=n

Ac
i = lim inf Ac

i

and similar for lim inf.

Problem 4. The Cantor Set
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Consider the set of sequences of elements of {0, 1, 2}:

T =

{
{xi}∞i=1

∣∣∣∣x ∈ {0, 1, 2}
}
.

Similar to the set of binary sequences, we can define ti(x) as the i-th ternary digit of x ∈ (0, 1), and

establish a (psuedo) bijection with the unit interval:

f({xi}) =
∞∑
i=1

ti(x)

3i
.

(Note that this is not a true bijection as written because we would need to establish a condition for

equivalent expansions similar to what we did for the binary digits, since .022 . . . and .100 . . . are both

equal to 1/3; however we will ignore this complication as justified by Problem 5(i)).

Given this definition, the Cantor set can be defined as

C = {x ∈ (0, 1)
∣∣ti(x) ̸= 1}.

i) Show that the Cantor set as defined above is equivalent to defining collections of sets Cn for all n ∈ N

through the following iterative process:

a) Initialization: Let C0 = {(0, 1)}.

b) Construct Cn+1 from Cn by removing the middle third of each of the intervals of Cn, i.e.

Cn+1 =

{[
a, a+

b− a

3

]
,

[
a+

2(b− a)

3
, b

] ∣∣∣∣∀[a, b] ∈ Cn

}
.

and taking the infinite intersection of the union of each of the Cn:

C =

∞⋂
n=1

⋃
A∈Cn

A.

ii) Show that the Cantor set is closed (i.e., contains all of its limit points).

iii) A set S is nowhere dense in X if for all open subsets E ⊂ X , S is not dense in E. Show that the

Cantor set is nowhere dense in (0, 1).

iv) Using the uniform probability space, show that P (C) = 0 by showing that P (C) < ϵ for all ϵ > 0.

Problem 4 Solution

i) It is sufficient to show that at each level n,⋃
A∈Cn

A = {x : ti(x) ̸= 1 ∀i ≤ n}.
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We will show this by proving the following claim through induction: at each level n, Cn consists of

the intervals [
x, x+

1

3n

]
∀x ∈ An

where

An = {x : ti(x) ̸= 1 ∀i ≤ n and ti(x) = 0∀i > n}.

This is true when n = 0 and x = 0 since the interval is [0, 1].

Suppose by that is true for n. We can see that each element x ∈ An corresponds to two elements in

An+1, x and x+ 2
3n+1 . When we construct Cn+1, the construction will produce the two intervals[

x, x+
1

3n+1

]
,

[
x+

2

3n+1
, x+

1

3n

]
.

We can see that the first interval corresponds to x in An+1. Re-writing the second interval as[
x+

2

3n+1
,

(
x+

2

3n+1

)
+

1

3n+1

]
we can see that this corresponds to x+ 2

3n+1 ∈ An+1. Since this holds for any element of An, we have

shown the induction hypothesis for Cn+1 and as such for all Cn. The result follows by taking the

infinite intersection.

ii) Let x denote a limit point of the Cantor set. Let ϵ = 1
3n . By the definition of a limit point there

exists a xn ∈ C such that |x− xn| < ϵ. This implies that ti(x) = ti(xn) ̸= 1 for all i < n. Since n is

arbitrary, this means that ti(x) ̸= 1 for all i, which means that x ∈ C, so since C contains all of its

limit points and is as such closed.

iii) Let A ⊂ (0, 1) denote an open set. By definition, for any x there exists an ϵ > 0 such that Nϵ(x) ⊂ A.

Denote the endpoints of this interval as (a, b). Since a ̸= b, there must exist some i such that

ti(a) ̸= ti(b); take i to be the first such value. Then let y be such that tj(y) = tj(a) = tj(b) for all

j < i but ti(y) = 1. Then a < y < b but y is not in C, so C cannot be dense in A.

iv) Since

P (Cn) =

2n∑
i=1

1

3n
=

(
2

3

)n

and P (C) < P (Cn) for all n, then take n to be large enough such that
(
2
3

)n
< ϵ for any ϵ < 0 to show

that P (C) = 0

2 Basic Probability

Problem 5. Binary Sequences
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i) Show that, when represented in base-2, .1000... = .0111... = 1
2 .

ii) Taking (Ω,F , P ) to be Ω = (0, 1), F as the Borel sets, and P as the uniform probability measure,

show that

P
({

x
∣∣∃N s.t. bj(x) = 0 ∀j ≥ N

})
= 0.

(In other words, the probability that a given binary sequence ends in all zeros is zero). This allows us

to use our bijection between the “non-terminating” binary sequences and the interval (0, 1) without

any loss of generality.

Problem 5 Solution

i) We can see that
∞∑

n=1

1

2n
=

1

2
+

∞∑
n=2

1

2n
= 1

implies
∞∑

n=2

1

2n
=

1

2
.

ii) Because each element of this set is a rational number, it is countable, and as such must be of

probability one as shown in class.

Problem 6. Infinite Sequences of Coin Flips

For the following parts, consider the event space of infinite sequences of zero-one coin flips:

Ω =
{
{xi}∞i=1

∣∣∣xi ∈ {0, 1}
}
.

i) Using the σ−algebra generated by evenly sized intervals of width 1/8 (i.e., F composed of the sets

Ai = (i/8, (i+ 1)/8) along with union and complements) derive the probability of the second and

third coin flips being heads.

ii) What is the smallest σ-algebra (i.e., composed of the fewest number of sets) that will allow you to

evaluate the probability of the second and third coin flips being heads?

iii) What is the smallest σ-algebra (i.e., composed of the fewest number of sets) that will allow you to

evaluate the probabilities that the second and third coin flips take any value? (i.e, (H,H), (T,T),

(H,T), (T,T)).

Problem 6 Solution

6



i)

P

((3
8
,
4

8

]
∪
(7
8
,
8

8

])
= P

((3
8
,
4

8

])
+ P

((7
8
,
8

8

])
=

1

8
+

1

8
=

1

4

ii) Let

A = (3/8, 4/8] ∪ (7/8, 8/8].

Then

F = {∅, A,Ac,Ω}

will allow us to evaluate the probability from part (a) with just four sets.

iii) If we need to calculate the probability of any two values, consider

A0 = (0/8, 1/8] ∪ (4/8, 5/8],

A1 = (1/8, 2/8] ∪ (5/8, 6/8],

A2 = (2/8, 3/8] ∪ (6/8, 7/8],

A3 = (3/8, 4/8] ∪ (7/8, 8/8].

Then let F consist of the unions and complements of these four sets. This yields 24 = 16 sets total,

unlike the C used in part (i) which is composed of 28 = 256 sets.

Problem 7. Probability of Union

Let P denote a probability function on sample space Ω and σ-algebra F . Show that

P

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

P (Ai).

Problem 7 Solution

First we will show the following:

P (A ∪B) ≤ P (A) + P (B).

which can be seen since

P (A ∪B) = P (A ∪B) + P (A \B) + P (B \A)

= P (A) + P (B)− P (A ∪B) ≤ P (A) + P (B).

Then we will use induction. Assume that

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P (Ai).
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Then

P

(
n+1⋃
i=1

Ai

)
= P

(
n⋃

i=1

Ai ∪An+1

)
≤

n∑
i=1

P (Ai) + P (An+1) =

n+1∑
i=1

P (Ai).

where the inequality follows by setting A in the above relationship to the sum, and B to An+1. The

statement follows by induction on n and taking the limit as n → ∞.

Problem 8. Some Results on σ−algebras

i) Let F denote the collection of all countable subsets of Ω = R, and their complements. Show that

a) F is a σ-algebra.

b) If P : F → [0, 1] is such that P (A) = 0 if A is countable, then (Ω,F , P ) forms a valid probability

space.

ii) Let F1 ⊂ F2 ⊂ ... denote an increasing series of σ-algebras. Show by example that
⋃

i Fi is not

necessary a σ-algebra.

Problem 8 Solution

i) (a) The first property holds because Ωc = ∅ is countable. The second property holds by

construction. To show the third property, let {Ai}∞i=1 denote a collection of sets in F . Write the

infinite union as ( ⋃
i:Ai uncountable

Ai

)
∪

( ⋃
i:Ai countable

Ai

)
≡ A ∪B.

where we will denote the first union as just A and the second union as B for simplicity.

Since the countable union of countable sets is countable, then B is in F . A is in F since its

complement is countable, as (⋃
i

Ai

)c

=

(⋂
i

Ac
i

)
is the intersection of countable sets. Then we can see that

A ∪B = (Ω \ (Ac)) ∪B = Ω \ ((Ac) \B).

Since Ac \B is countable, then it follows that A ∪B is countable, so
⋃∞

n=1 Ai ∈ F .

(b) Since ∅ is countable and the complement of Ω is countable, then P (∅) = 0 and P (Ω) = 1.

Consider a disjoint collection {Ai}i. Then it can be seen that at most one of these is

uncountable (since, if A and B were disjoint and both uncountable, then B would be in Ac
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which violates the construction). Say there is one uncountable set that we identify as i = 1.

Then
⋃

i Ai is uncountable, so

1 = P

(⋃
i

Ai

)
= P (A1) +

∞∑
n=2

P (Ai) = 1 + 0 = 0.

If all of the sets are countable, then both sides will just be equal to zero.

ii) For one example, consider Fn as the σ-algebra obtained by taking unions/complements of half-open

sub-intervals of (0, 1] of length 1
2n , i.e.

(
i
2n ,

i+1
2n

]
. Then, for example, {1/2} ̸∈

⋃∞
n=1 Fi because

{1/2} ̸∈ Fn for any n, however
⋂∞

n=1(1/2− 1/2n, 1/2] = 1/2 implies that {1/2} would need to be in⋃∞
n=1 Fi in order for it to be a σ-algebra.

Another example would be to let Fn be equal to the set of all subsets of {1, ..., n} and their

complements in N. Then
⋃∞

n=1 Fn will include all of the singleton sets {i}, so
⋃

i: i is even{i} will be

the set of all even natural numbers. However this set is not in any Fn, so cannot be in
⋃∞

n=1 Fn.
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