
Stat 513
Assignment 1

Topic 1: Probability and Set Theory

Fall 2025

Total: 50 points

Due Sunday, September 7 at 23:59

1 Set Theory

Problem 1. Countability..

The algebraic numbers are defined as the set of roots of polynomials with integer coefficients. Formally,

A =

{
x : ∃N, a0, a1, ...aN ∈ Z s.t.

N∑
i=0

aix
i = 0

}
.

Is A countable or uncountable? Show your answer by either demonstrating the existence of a bijection, or

showing that no such bijection could exist.

Problem 2. Countability and Density of Sets

As in class, let bi(x) denote the i-th binary digit of x ∈ (0, 1). The set of normal numbers between zero and one

is defined as the following set:

A =

{
x ∈ (0, 1)

∣∣∣∣ lim
n→∞

1

n

n∑
i=1

bi(x) =
1

2

}
.

i) Show that A is dense in (0, 1). Hint: For a given ϵ, look at the first n digits of the binary expansion for an

appropriate value of n.

ii) Show that the complement of A is also dense in (0, 1).

Problem 3. Lim-sup and lim-inf of sets.

Consider a countable sequence of sets A1, A2, . . . . The lim-sup and lim-inf of this sequence are defined as

follows:

lim inf Ai =

∞⋃
n=1

∞⋂
i=n

Ai

and

lim supAi =

∞⋂
n=1

∞⋃
i=n

Ai.

i) Let Ai =
[
0, 1

i

]
if i is odd and Ai = [0, 1] if i is even. What are lim supAi and lim inf Ai?
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ii) Show that if Ai ⊂ Ai+1 for all i, then the liminf and limsup of {Ai}∞i=1 are equal to each other and to the

(infinite) union. Show the analogous result if Ai ⊃ Ai+1 with respect to the infinite intersection.

iii) Show that

(lim inf Ai)
c
= lim supAc

i

and

(lim supAi)
c
= lim inf Ac

i .

Problem 4. The Cantor Set

Consider the set of sequences of elements of {0, 1, 2}:

T =

{
{xi}∞i=1

∣∣∣∣x ∈ {0, 1, 2}
}
.

Similar to the set of binary sequences, we can define ti(x) as the i-th ternary digit of x ∈ (0, 1), and establish a

(psuedo) bijection with the unit interval:

f({xi}) =
∞∑
i=1

ti(x)

3i
.

(Note that this is not a true bijection as written because we would need to establish a condition for equivalent

expansions similar to what we did for the binary digits, since .022 . . . and .100 . . . are both equal to 1/3;

however we will ignore this complication as justified by Problem 5(i)).

Given this definition, the Cantor set can be defined as

C = {x ∈ (0, 1)
∣∣ti(x) ̸= 1}.

i) Show that the Cantor set as defined above is equivalent to defining collections of sets Cn for all n ∈ N

through the following iterative process:

a) Initialization: Let C0 = {(0, 1)}.

b) Construct Cn+1 from Cn by removing the middle third of each of the intervals of Cn, i.e.

Cn+1 =

{[
a, a+

b− a

3

]
,

[
a+

2(b− a)

3
, b

] ∣∣∣∣∀[a, b] ∈ Cn

}
.

and taking the infinite intersection of the union of each of the Cn:

C =

∞⋂
n=1

⋃
A∈Cn

A.

ii) Show that the Cantor set is closed (i.e., contains all of its limit points).
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iii) A set S is nowhere dense in X if for all open subsets E ⊂ X , S is not dense in E. Show that the Cantor

set is nowhere dense in (0, 1).

iv) Using the uniform probability space, show that P (C) = 0 by showing that P (C) < ϵ for all ϵ > 0.

2 Basic Probability

Problem 5. Binary Sequences

i) Show that, when represented in base-2, .1000... = .0111... = 1
2 .

ii) Taking (Ω,F , P ) to be Ω = (0, 1), F as the Borel sets, and P as the uniform probability measure, show

that

P
({

x
∣∣∃N s.t. bj(x) = 0 ∀j ≥ N

})
= 0.

(In other words, the probability that a given binary sequence ends in all zeros is zero). This allows us to

use our bijection between the “non-terminating” binary sequences and the interval (0, 1) without any loss

of generality.

Problem 6. Infinite Sequences of Coin Flips

For the following parts, consider the event space of infinite sequences of zero-one coin flips:

Ω =
{
{xi}∞i=1

∣∣∣xi ∈ {0, 1}
}
.

i) Using the σ−algebra generated by evenly sized intervals of width 1/8 (i.e., F composed of the sets

Ai = (i/8, (i+ 1)/8) along with union and complements) derive the probability of the second and third

coin flips being heads.

ii) What is the smallest σ-algebra (i.e., composed of the fewest number of sets) that will allow you to

evaluate the probability of the second and third coin flips being heads?

iii) What is the smallest σ-algebra (i.e., composed of the fewest number of sets) that will allow you to evaluate

the probabilities that the second and third coin flips take any value? (i.e, (H,H), (T,T), (H,T), (T,T)).

Problem 7. Probability of Union

Let P denote a probability function on sample space Ω and σ-algebra F . Show that

P

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

P (Ai).
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Problem 8. Some Results on σ−algebras

i) Let F denote the collection of all countable subsets of Ω = R, and their complements. Show that

a) F is a σ-algebra.

b) If P : F → [0, 1] is such that P (A) = 0 if A is countable, then (Ω,F , P ) forms a valid probability

space.

ii) Let F1 ⊂ F2 ⊂ ... denote an increasing series of σ-algebras. Show by example that
⋃

i Fi is not necessary

a σ-algebra.

Bonus Problem. Infinite Monkeys.

Let Ω =
{
{xi}∞i=1

∣∣∣xi ∈ {a, b, ..., z}
}
denote the collection of infinite sequences of latin letters. Note that we can

define a “uniform” probability space on Ω through a bijection between Ω and the interval (0, 1) (using numbers

represented in base 26).

Let S = (x1, ..., xn) denote a fixed sequence of n letters. Show that for any such sequence,

P
({

{xi} ∈ Ω
∣∣∣S is a sub-sequence of {xi}

})
= 1.
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